10Gb/s SFP+DWDM 80km с оптическим модулем передачи и приема CDR

HX5D-ALxx81x

характеристика

- Связь передачи данных до 11,3 Гбит/с
- DWDM EML-передатчик и APD фотодетектор
- Расстояние между каналами ITU 100 ГГц со встроенным блокировщиком длины волны
- До 80 км на 9/125 м SMF
- Поддержка CDR от 9,95 до 11,3 Гб/с
- Дуплексный штепсельный интерфейс типа LC/UPC
- Поддержка цифрового интерфейса мониторинга ди
- Соответствует стандарту RoHS и не содержит свинц
- Горячий штекер SFP + размер
- Одиночный + 3,3 В блок питания
- Соответствует SFF + MSA и SFF-8472
- Металлический корпус для снижения электромагнитных помех
- Удовлетворяет требованиям ESD, устойчив к прямому контактному напряжению 8кВ
- Рабочая температура

корпуса Коммерческий:

$$0 \sim +70^{\circ} C$$

Расширение: -10 ~

+80 ° C

Промышленность: -

40 ~ +85 ° C

- Ethernet 10GBASE-ZR/ZW&10G
- SDH STM64

Сайт: www.glhcoptical.com

• Другие оптические каналы

Номер детали Заказная информация

Номер детали	Скорость передачи данных (Гб/с)	Длина волны (нм)	Дальность передачи (км)	Температура °С) (рабочий режим)
HX5D-ALxx81C	10.3125	длина волны пальца отбор	80 км SMF	0 ~ 70 коммерческий
HX5D-ALxx81E	10.3125	выборка длины волны	80 км SMF	-10-80 расширение
HX5D-ALxx81I	10.3125	длина волны пальца отбор	80 км SMF	-40-85 промышленность

Выбор длины волны: С диапазон лямбда-С длины волны инструкция направляющей иглы

проход	Длина волны (нм)	Частота (ТГц)	проход	Длина волны (нм)	Частота (ТГц)
C17	1563.86	191.70	C39	1546.12	193.90
C18	1563.05	191.80	C40	1545.32	194.00
C19	1562.23	191.90	C41	1544.53	194.10
C20	1561.42	192.00	C42	1543.73	194.20
C21	1560.61	192.10	C43	1542.94	194.30
C22	1559.79	192.20	C44	1542.14	194.40
C23	1558.98	192.30	C45	1541.35	194.50
C24	1558.17	192.40	C46	1540.56	194.60
C25	1557.36	192.50	C47	1539.77	194.70
C26	1556.55	192.60	C48	1538.98	194.80
C27	1555.75	192.70	C49	1538.19	194.90
C28	1554.94	192.80	C50	1537.40	195.00

Электронная почта: lina@glhcoptical.com

Сайт: www.glhcoptical.com

HX5D-ALxx81x

Характеристики изделия

C29	1554.13	192.90	C51	1536.61	195.10
C30	1553.33	193.00	C52	1535.82	195.20
C31	1552.52	193.10	C53	1535.04	195.30
C32	1551.72	193.20	C54	1534.25	195.40
C33	1550.92	193.30	C55	1533.47	195.50
C34	1550.12	193.40	C56	1532.68	195.60
C35	1549.32	193.50	C57	1531.90	195.70
C36	1548.51	193.60	C58	1531.12	195.80
C37	1547.72	193.70	C59	1530.33	195.90
C38	1546.92	193.80	C60	1529.55	196.00
Не входит в МСЭ	пиковая длина волны 1528,77 нм-1563,86		C61	1528.77	196.10

Электронная почта: lina@glhcoptical.com

Сайт: www.glhcoptical.com

1. абсолютный максимальный номинал

Следует отметить, что действия, превышающие любую отдельную абсолютную максимальную норму, могут привести к необратимому повреждению данного модуля.

параметр	символ		максимальн ое значение	единица	ПРИМЕ ЧАНИЕ
температура хранения	$T_{\rm s}$	-40	85	°C	
напряжение питания	$ m V_{cc}$	-0.5	3.6	V	
Относительная влажность (без конденсации)	справа	5	95	%	
порог повреждения	суммарное гармоническ ое искажение	0		децибел	

2. Рекомендуемые условия работы и требования к электропитанию

параметр	символ	миним альное значен ие	типичный	максимальн ое значение	единица	ПРИМЕЧАНИЕ
		0		70		коммерческий
Температура рабочего режима	вершина	-10		80	°C	растянутый
		-40		85		промышленный
напряжение питания	$ m V_{cc}$	3.135	3.3	3.465	V	
скорость передачи данных			10.3125		гигабайт/с	
Высокое контрольное входное напряжение		2		Vcc	V	
Низкое контрольное входное напряжение		0		0.8	V	
Расстояние связи (SMF)	D			80	километр	9/125 мкм

3. Обзор

Приемопередатчик HC'HX5D-ALxx81x SFP+ предназначен для использования на одномодовом оптическом волокне на расстоянии до 80 км. Модуль состоит из лазера DWDM EML, APD и предусилителя. Как указано в SFF-8472, функция цифровой диагностики доступна через двухпроводный последовательный интерфейс. Модуль предназначен для одномодового оптоволокна и работает на номинальной длине волны 100GHz ITU-сетки, длине волны DWDM C-диапазона.

Приемопередатчик HX5D-ALxx81x предлагает уникальный улучшенный цифровой интерфейс мониторинга диагностики, который позволяет в режиме реального времени получать доступ к рабочим параметрам устройства, таким как температура приемопередатчика, ток смещения лазера, мощность излучаемой оптики, мощность приемной оптики и напряжение питания приемопередатчика. Он

Также определена сложная система сигнализации и предупреждающих знаков, которая сигнализирует конечному потребителю, когда тот или иной рабочий параметр выходит за пределы установленного заводом нормального диапазона.

SFP + MSA определяет карту памяти объемом 256 байт в EEPROM, доступную через 2-проводной последовательный интерфейс с 8-битным адресом 1010000X (A0h). Интерфейс цифрового диагностического мониторинга использует 8-битный адрес 1010001X (A2h), поэтому изначально определенная карта памяти с последовательным идентификатором осталась неизменной.

4. Распределение штифтов и описание штифтов

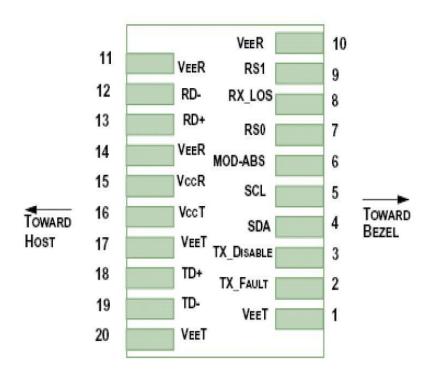


Диаграмма 1. Схема номера и названия выводов модуля разъема материнской платы

штифт	символ	Наименование/описание	ПРИМЕЧ АНИЕ
1	V EET	Заземление передатчика (такое же, как и заземление приемника)	1
2	Т неисправность	Отказ передатчика.	2
3	T dis	Передатчик выведен из строя. Выход лазера отключается на высоком уровне или при разомкнутой цепи.	3

4	SDA	2-проводной последовательный интерфейсный кабель для передачи данных	4
5	SCL	2-проводная последовательная интерфейсная тактовая линия	4
6	Антиблокирово чная тормозная система	Модуля не существует. Заземление в модуле	4
7	RS0	Выбор тарифа% 0	5
8	LOS	Сигнал указывает на потерю. Логика 0 означает нормальную работу.	6
9	RS1	Подключение не требуется	
10	V EER	Заземление приемника (такое же, как и заземление передатчика)	1
11	V EER	Заземление приемника (такое же, как и заземление передатчика)	1
12	НИОКР-	Приемник инвертирует вывод данных. связь переменного тока	
13	НИОКР +	Приемник не выводит данные в обратном направлении. связь переменного тока	
14	V EER	Заземление приемника (такое же, как и заземление передатчика)	1
15	V CCR	источник питания приемника	
16	V непрерывно связанная сделка	источник питания передатчика	
17	V EET	Заземление передатчика (такое же, как и заземление приемника)	1
18	TD+	Передатчик не вводит данные в обратную фазу. Связь переменного тока.	
19	TD-	Обратный ввод данных передатчиком. Связь переменного тока.	
20	V EET	Заземление передатчика (такое же, как и заземление приемника)	1

Примечание:

- 1. Внутренняя изоляция заземления цепи от заземления шасси.
- 2. TFAULT представляет собой разомкнутый выход коллектора/стока, если вы хотите использовать его, то его следует подтянуть с помощью сопротивления 4,7 кОм-10 кОм на материнской плате. Напряжение вытягивания вверх должно составлять от 2,0 В до Vcc+0,3 В. Высокий выход указывает на неисправность передатчика, вызванную током смещения передатчика или выходной мощностью передатчика, превышающей предустановленный порог сигнализации. Низкий выход означает нормальную работу. В состоянии низкого уровня выход подтягивается к <0.8V.
- 3. Выход лазера отключен или включен при TDIS > 2,0 В, включен при TDIS < 0,8 В
- 4. Следует подтянуть 4,7 кОм-10 кОм на материнской плате до напряжения между 2,0 и 3,6 В. МОD_ABS тянет линию вниз, что означает, что модуль подключен к питанию.
- 5. Вытянута изнутри в соответствии с версией 4.1 SFF-8431.

6. LOS-коллекторный разомкнутый выход. Он должен тянуть напряжение от 2,0 В до 3,6 В на материнской плате с 4,7 кОм-10 кОм. Логика 0 означает нормальную работу; Логика 1 указывает на потерю сигнала.

5. Электрические характеристики

Если не указано иное, следующие электрические характеристики определяются в рекомендуемых рабочих условиях.

параметр	символ	мерить капли	Типичн о.	максимальн ое значение	единиц а	ПРИМЕЧА НИЕ		
расход мощности	p			1.8	W			
ток питания	Icc			520	лошадь			
передатчик								
однополюсное входное напряжение Vcc -0.3 4.0 допуск								
входное напряжение общего модуля переменного тока Допуск (RMS)		15			средне е давлен ие			
амплитуда колебания дифференциального входного напряжения	Vin,pp	120		850	mVpp			
дифференциальное входное сопротивление	зина	90	100	110	Ом	1		
время отключения передачи				10	Мы			
напряжение запрещения пуска	Vdis	Vcc-1.3		Vcc	V			
эмиссионное напряжение	текст	v-образная форма		Vee +0.8	V	2		
	прі	иёмник						
амплитуда колебания дифференциального выходного напряжения	Vout,pp	300		850	mVpp			
дифференциальное выходное сопротивление	Zout	90	100	110	Ом	3		
время повышения/снижения выходных данных	Tr/Tf	28			приписка	4		
LOS заданное напряжение	Флош	Vcc-1.3		Vcc	V	5		
LOS для утверждения напряжения	VlosL	v-образная форма		Vee +0.8	V	5		
подавление питания	PSR	100			mVpp	6		

Примечание:

- 1. Подключается непосредственно к контакту ввода данных ТХ. После этого происходит связь переменного тока.
- 2. Или открыть дорогу.
- 3. Введите 100 Ом дифференциального соединения.

- 4. Это нефильтрованные 20-80% значения.
- 5. Потеря сигнала составляет LVTTL. Логика 0 означает нормальную работу; Логика 1 означает, что сигнал не обнаружен.
- 6. Чувствительность приемника соответствует синусоидальной модуляции питания от 20 Гц до 1,5 МГц и может достигать заданных значений, применяемых с помощью рекомендуемой сети фильтров питания.

6. Оптические характеристики

Если не указано иное, следующие оптические характеристики определяются в рекомендуемой рабочей среде.

параметр	символ	мерить капли	типичный	максимальн ое значение	едини ца	ПРИМЕЧ/ НИЕ
	пере	едатчик				
длина волны света	лямбда С	αC-0.1		Лямбда- С+0,1	наном етр	1
расстояние между центральными длинами волн			100		гигагер Ц	
ширина спектра	Δλ			1	наном етр	
коэффициент подавления боковых мод	SMSR	30			dB	
средняя оптическая мощность	асфальт оукладчи к	0		5	децибе л	2
коэффициент световой экспансии	Эх	8.2			dB	
Наказание передатчика и дисперсии	TDP			3	dB	
отключенная выходная мощность передающего механизма	Бов			-30	децибе л	
шум относительной интенсивности	кольцо			-128	дециб	
					ел	
					/ча	
пусковая маска		Соот	ветствует IEEE	802.3ae	C Z	
	при	ёмник				
центральная длина волны	лямбда С	1480		1580	наном етр	
Чувствительность приемника (средняя мощность)	сенатор			-24	децибе л	3
Входная мощность насыщения (перегрузка)	Psat	-8			децибе л	
Утверждение LOS	Лоза	-35			dB	
LOS для утверждения	потеря			-26	децибе л	

HX5D-ALxx81x

Характеристики изделия

запаздывание LOS	потеря	0.5	децибе	
			Л	

Примечание:

- 1. Лямбда-с относится к выбору длины волны, соответствующей примерно 0,8 нм
- 2. Лазерная безопасность первого уровня в соответствии с правилами FDA/CDRH и IEC-825-1.
- 3. Источник света составляет 1528,77-1563,86 нм, ER=8,2 дБ; BER=<10^-12@10.3125 Гбит/с, PRBS=2^31-1 NRZ.

7. Функция цифровой диагностики

Если не указано иное, следующие цифровые диагностические характеристики определяются в рекомендуемых рабочих условиях. Он соответствует режиму внутренней калибровки SFF-8472 Rev10.2. Для внешнего режима калибровки, пожалуйста, свяжитесь с нашим продавцом.

параметр	символ	мерить капли	максимал ьное значение	единица	ПРИМЕЧАНИЕ
Абсолютная погрешность монитора температуры	DMI_Temp	-3	3	degC	Слишкомвысокая рабочаяте мпература
Абсолютная ошибка контроля напряжения питания	DMI_VCC	-0.15	0.15	V	полный объем работ
Абсолютная ошибка монитора питания	DMI_RX	-3	3	dB	
монитор смещенного тока	DMI_ bias	-10%	10%	лошадь	
Абсолютная ошибка монитора мощности ТХ	DMI_TX	-3	3	dB	

8. механический размер

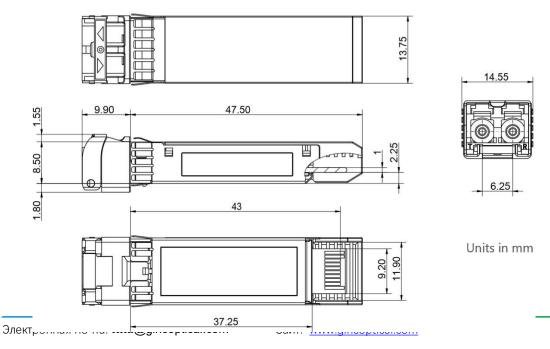


Диаграмма II. механический контур

Электронная почта: lina@glhcoptical.com

Р

Сайт: www.glhcoptical.com