3.125Gb/s SFP CWDM 40km оптический приемопередающий модуль HCSC-3Lx41xF

характеристика

- Канал передачи данных до 3,125 Гбит/с
- Лазерный передатчик CWDM DFB и фотодетектор PIN
- До 40 км на 9/125 м SMF
- Горячая вставка SFP размер
- Дуплексный штепсельный интерфейс типа LC/UPC
- Низкое энергопотребление
- Металлический корпус для снижения электромагнитных помех
- Соответствует стандарту RoHS и не содержит свинца
- Поддержка цифрового интерфейса мониторинга диагностики
- Одиночный + 3,3 В блок питания
- Соответствует SFF-8472.
- Рабочая температура

корпуса: Коммерческая

температура: 0 ~ + 70 °C

Температура расширения:

-10 ~ + 80 °C

Промышленность: -40 ~ +85 °C

приложение

• Переключиться на интерфейс коммутатора

- гигабитная эфирная сеть
- Применение сменной задней панели
- Интерфейс маршрутизатора/сервера

• Другие оптические каналы

длина волны	x	Цветовой код застежки	длина волны	x	Цветовой код пряжки
1270	6	серый	1450	G	коричневый
1290	7	серый	1470	Н	серый
1310	3	серый	1490	4	фиолетовый
1330	8	фиолетовый	1510	I	Синий
1350	9	Синий	1530	J	зелёный
1370	A	зелёный	1550	5	желтый
1390	В	желтый	1570	K	оранжевый
1410	Е	оранжевый	1590	L	Красный
1430	F	Красный	1610	M	коричневый

1. абсолютный максимальный номинал

Следует отметить, что действия, превышающие любую отдельную абсолютную максимальную норму, могут привести к необратимому повреждению данного модуля.

параметр	символ	минимальн о е значение	максимально е значение	единица	ПРИМ Е ЧАНИ Е
температура хранения	TS	-40	85	° C	
Температура рабочего режима	Tcase	Просмотр информации о заказе		٥C	
напряжение питания		-0.3	3.6	V	

Электронная почта: lina@glhcoptical.com

I 性种恒创光电科技有限公司 HC Optical Science and Tech Co., Ltd.

HCSC-3L341xF

Хригропки**ге**ия

	Vcc				
Относительная влажность (без конденсации)	справа	5	95	%	
порог повреждения	суммарное гармоничес	5		децибел	×
	к ое искажение				

2. Рекомендуемые условия работы и требования к электропитанию

параметр	символ	минимал ьное	типичный	максимал ь ное	единица	ПРИМЕЧАНИ Е
		значени е	0)	значение		
		0)	70		коммерческий
Температура рабочего режима		-10		80		растянутый
1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	· Cle	-40		85		промышленны
	вершина				o C	й
напряжение питания	VCC	3.135	3.3	3.465	V	
скорость передачи данных			3.125		гигабайт/ с	
Высокое контрольное входное напряжение		2		Vcc	V	
Низкое контрольное входное напряжение		0		0.8	V	
Расстояние связи (SMF)	D			40	километр	9/125 мкм

Электронная почта: lina@glhcoptical.com

3. Обзор

Небольшой подключаемый (SFP) трансивер HCSC-3Lx41xF совместим с небольшим подключаемым многоисходным протоколом (MSA), трансивер состоит из пяти частей: LD-привода, ограничивающего амплитуду усилителя, цифрового

диагностического монитора, лазера CWDM DFB и фотодетектора PIN. Модульный канал передачи данных имеет длину до 40 км в одномодовом оптоволокне размером 9/125 микрон. Выход света может быть отключен с помощью логического входа высокого уровня TTL Tx Disable, а система может отключить модуль с помощью I2C. Предусматривает отказ Тх для индикации деградации лазера.

Предоставление выходного сигнала потери (LOS) для указания на потерю входного оптического сигнала приемника или линии связи

Отношения с партнерами. Система также может получить информацию о LOS (или Link)/отключении/отказе через доступ к регистру I2C.

4. Распределение штифтов и описание штифтов

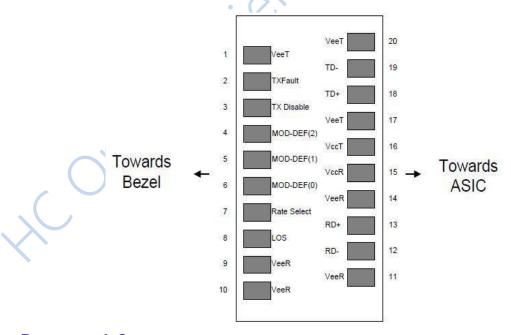


Диаграмма 1. Схема номера и названия выводов модуля разъема материнской платы

Хунофонки**ге**ня

штифт	Наименование	Наименование/описание	ПРИМЕЧА НИЕ
1	Цинь Минъюань	Заземление передатчика (такое же, как и заземление приемника)	1
2	неисправность	Отказ передатчика.	
3	TXDIS	Передатчик выведен из строя. Выход лазера отключается на высоком уровне или при разомкнутой цепи.	2
4	MOD_DEF(2)	Определение модуля 2. Кабель для передачи данных с серийным номером.	3
5	MOD_DEF(1)	Определение модуля 1. Тактовая линия для последовательных идентификаторов.	3
6	MOD_DEF(0)	Определение модуля 0. Заземление внутри модуля.	3
7	выбор скорости	Подключение не требуется	4
8	LOS	Сигнал указывает на потерю. Логика 0 означает нормальность Операции.	5
9	поворот	Заземление приемника (такое же, как и заземление передатчика)	1
10	поворот	Заземление приемника (такое же, как и заземление передатчика)	1
11	поворот	Заземление приемника (такое же, как и заземление передатчика)	1
12	НИОКР-	Приемник инвертирует вывод данных. связь переменного тока	
13	НИОКР +	Приемник не выводит данные в обратном направлении. связь переменного тока	
14	поворот	Заземление приемника (такое же, как и заземление передатчика)	1
15	VCCR	источник питания приемника	
16	VCCT	источник питания передатчика	
17	Цинь Минъюань	Заземление передатчика (такое же, как и заземление приемника)	1

Электронная почта: lina@glhcoptical.com

Хұнтұротки**ге**ля

18	TD+	Передатчик не вводит данные в обратную фазу. Связь переменного тока.	
19	TD-	Обратный ввод данных передатчиком. Связь переменного тока.	
20	Цинь Минъюань	Заземление передатчика (такое же, как и заземление приемника)	1

Хұнаропки**ж**ія

5. Электрические характеристики

Если не указано иное, следующие электрические характеристики определяются для рекомендуемых условий эксплуатации

						×
параметр	символ	Мини	типичный	Макс	единица	Примечание
						0.1
				1.0		коммерческий
расход мощности	Р			1.5	W	промышленный
				300	()	коммерческий
ток питания	lcc		7	450	лошад ь	промышленный
	Г	Тередатч и				
	•	тередатчи				
допуск однополюсного входного	V_{cc}	-0.3		4.0	V	
напряжения						
дифференциальное входное напряжение	Vin,pp	200		2400	mVpp	
качание	7					
дифференциальное входное сопротивление	зина	90	100	110	Ом	
время отключения передачи				5	Мы	
напряжение запрещения пуска	Vdis	Vcc-1.3		Vcc	V	
эмиссионное напряжение	текст	Vee-0.3		0.8	V	

Хриперопис**и**

	Г	Триёмни	K			
амплитуда колебания дифференциального выходного напряжения	Vout,pp	500		900	mVpp	
дифференциальное выходное сопротивление	Zout	90	100	110	Ом	
время повышения/снижения выходных данных	Tr/Tf		100		приписк а	20-8
LOS заданное напряжение	Флош	Vcc-1.3		Vcc	V	
LOS для утверждения напряжения	VlosL	Vee-0.3		0.8	V	

6. оптическая характеристика

параметр	символ	мерить типичный капли		максима л ьное значени е	единица	ПРИМЕЧ АН ИЕ
	пер	редатчик				\sim
центральная длина волны	лямбда С	X-6.5	Х	X+6.5	нанометр	
ширина полосы частот	σ			1	нанометр	
коэффициент подавления боковых мод	SMSR	30			dB	
средняя оптическая мощность	асфальтоукладчик	-2		3	децибел	2
коэффициент световой экспансии	Эх	7	A		dB	
отключенная выходная мощность передающего механизма	Бов		6	-45	децибел	
пусковая маска		Соответс	твие G.959 (ла безопас		о уровня)	
	(n)	риёмник				
центральная длина волны	лямбда С	1270		1610	нанометр	
Чувствительность приемника (средняя мощность)	сенатор			-19	децибел	3
Входная мощность насыщения (перегрузка)	Psat	-3			децибел	
Утверждение LOS	Лоза	-36			dB	4
LOS для утверждения	потеря			-20	децибел	4
запаздывание LOS	потеря	0.5	2.0	6.0	децибел	

Если не указано иное, следующие оптические характеристики определяются в рекомендуемой рабочей среде.

Г	۱r	ענ	11	ıe.	ч	а	н	и	e:
•	ı٢	,,		. ~	•	u		,,	٠.

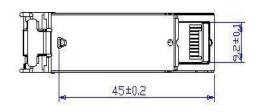
Хрипропил**и**ля

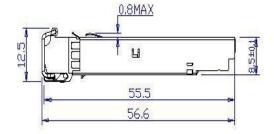
X: См. список длин волн HCSC-3Lx41x. Модуль промышленного класса содержит схему TEC. Измеряется в режиме 2^23-1 NRZ PRBS

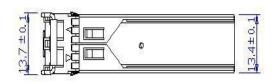
Измеренный источник света 1270–1610 нм, ER=7 дБ; BER = $< 10^{-12}$ @ PRBS = 2^{23} -1 NRZ Ког

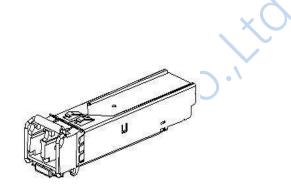
да LOS снимает утверждение, RX данные +/- выходят на высокий уровень (фиксированный).

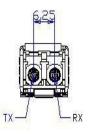
7. Функция цифровой диагностики

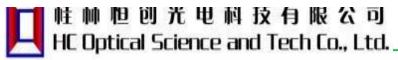

Е с л и не указано иное, следующие цифровые диагностические характеристики определяются в рекомендуемых рабочи условиях. Он соответствует режиму внутренней калибровки SFF-8472 Rev10.2. Для внешнего режима калбровки, пожалуйста, свяжитесь с нашим продавцом.


параметр	символ	мерит	максим	единиц	ПРИМЕЧАНИЕ
		ь	а льное	а	
		капл	значеи		
	(И	е		
Абсолютная погрешность монитора	DMI_Temp	-3	3	degC	Слишком
температуры					высокая
• (2),				рабочая
					температур


Абсолютная ошибка контроля напряжения питания	DMI_VCC	-0.15	0.15	V	полный объем работ
Абсолютная ошибка монитора питания	DMI_RX	-3	3	dB	
монитор смещенного тока	DMI_ bias	-10%	10%	лошадь	
Абсолютная ошибка монитора мощности ТХ	DMI_TX	-3	3	dB	


Электронная почта: lina@glhcoptical.com


8. механический размер



Units in mm

Диаграмма II. механический контур

Хритфопки**ге**ля

Номер детали Заказная информация

Номер детали	Скорость передачи данных (Гб/с)	Длина волны (нм)	Коробкапередач	Температура (°C) (в зависимости от условий эксплуатации)
HCSC-3Lx41CF	3.125	Обратитесь -к выбору длины волны	40 км SMF	0 ~ 70 коммерческий
HCSC-3Lx41EF	3.125		40 км SMF	-10-80 расширение
HCSC-3Lx41IF	3.125		40 km SMF	-40-85 промышленность
X O X	3			