10Gb/s SFP+ CWDM 40km Optical Transceiver Module HXSC-ALxx41I-R85

Features

- Up to 11.3Gb/s data links
- CWDM EML transmitter and VCSEL receiver
- Up to 40km on 9/125μm SMF
- Hot-pluggable SFP+ footprint
- Duplex LC/UPC type pluggable optical interface
- RoHS-10 compliant and lead-free
- Support Digital Diagnostic Monitoring interface
- Single +3.3V power supply
- Compliant with SFF+MSA and SFF-8472
- Metal enclosure, for lower EMI
- Meet ESD requirements, resist 8KV direct contact voltage
- Case operating temperature

Applications

- 10GBASE-LR/LW & 10G Ethernet
- SDH STM64
- Other Optical Links

Part Number Ordering Information

Part Number	Data Rate (Gb/s)	Wavelength (nm)	Transmission Distance(km)	Temperature (°C) (Operating Case)	
HXSC-ALxx41I-R85	10.3125	Refer to wavelength selection	40km SMF	-50~85 Industrial	

Wavelength Selection: CWDM λ Wavelength Guide Pin Descriptions

Wavelength	XX	Clasp Color Code	Wavelength	xx	Clasp Color Code
1470 nm	47	Gray	1550 nm	55	Yellow
1490 nm	49	Purple	1570 nm	57	Orange
1510 nm	51	Blue	1590 nm	59	Red
1530 nm	53	Green	1610 nm	61	Brown

I. Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Max	Unit	Notes
Storage Temperature	T_{S}	-50	85	°C	
Power Supply Voltage	V_{CC}	-0.5	3.6	V	
Relative Humidity (non-condensation)	RH	5	95	%	
Damage Threshold	TH_d	5		dBm	

II. Recommended Operating Conditions and Power Supply Requirements

Ш.

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Operating Case Temperature	T_{OP}	-50		85	°C	Industrial
Power Supply Voltage	V_{CC}	3.135	3.3	3.465	V	
Data Rate			10.3125		Gb/s	
Control Input Voltage High		2		Vcc	V	
Control Input Voltage Low		0		0.8	V	
Link Distance (SMF)	D			40	km	9/125um

General Description

HXSC-ALxx41I-R85 SFP+ transceiver is designed for use in 10-Gigabit Ethernet links up to 40km over single mode fiber. The module consists of CWDM EML Laser, 850nm VCSEL and Preamplifier in a high-integrated optical sub-assembly. Digital diagnostics functions are available via a 2-wire serial interface, as specified in SFF-8472.

HXSC-ALxx41I-R85 transceivers provide a unique enhanced digital diagnostic monitoring interface, which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, and received optical power and transceiver supply voltage. It also defines a sophisticated system of alarm and warning flags, which alerts end-users when particular operating parameters are outside of a factory set normal range.

The SFP+ MSA defines a 256-byte memory map in EEPROM that is accessible over a 2-wire serial interface at the 8 bit address 1010000X (A0h). The digital diagnostic monitoring interface makes use of the 8 bit address 1010001X (A2h), so the originally defined serial ID memory map remains unchanged.

IV. Pin Assignment and Pin Description

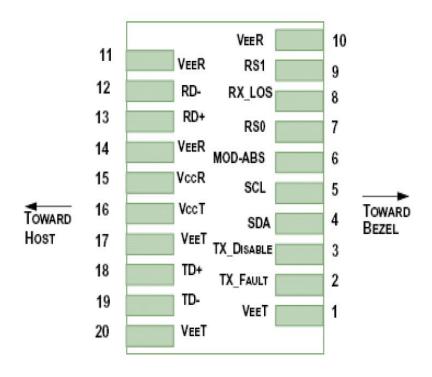


Figure 1. Diagram of host board connector block pin numbers and names

Pin	Symbol	Name/Description	Notes
1	$ m V_{_{EET}}$	Transmitter Ground (Common with Receiver Ground)	1
2	$T_{_{FAULT}}$	Transmitter Fault.	2
3	${\rm T_{ m DIS}}$	Transmitter Disable. Laser output disabled on high or open.	3
4	SDA	2-wire Serial Interface Data Line	4
5	SCL	2-wire Serial Interface Clock Line	4
6	MOD_ABS	Module Absent. Grounded within the module	4
7	RS0	Rate Select 0	5
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation.	6
9	RS1	No connection required	
10	$ m V_{EER}$	Receiver Ground (Common with Transmitter Ground)	1

HXSC-ALxx41I-R85

11	${ m V}_{_{ m EER}}$	Receiver Ground (Common with Transmitter Ground)	1
12	RD-	Receiver Inverted DATA out. AC Coupled	
13	RD+	Receiver Non-inverted DATA out. AC Coupled	
14	${ m V}_{ m EER}$	Receiver Ground (Common with Transmitter Ground)	1
15	V_{CCR}	Receiver Power Supply	
16	V_{CCT}	Transmitter Power Supply	
17	${ m V}_{_{ m EET}}$	Transmitter Ground (Common with Receiver Ground)	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	$ m V_{_{EET}}$	Transmitter Ground (Common with Receiver Ground)	1

Notes:

- 1. Circuit ground is internally isolated from chassis ground.
- 2. TFAULT is an open collector/drain output, which should be pulled up with a $4.7k\Omega$ - $10k\Omega$ resistor on the host board if intended for use. Pull up voltage should be between 2.0V to Vcc + 0.3V.A high output indicates a transmitter fault caused by either the TX bias current or the TX output power exceeding the preset alarm thresholds. A low output indicates normal operation. In the low state, the output is pulled to <0.8V.
- 3. Laser output disabled on TDIS >2.0V or open, enabled on TDIS <0.8V.
- 4. Should be pulled up with $4.7k\Omega-10k\Omega$ on host board to a voltage between 2.0V and 3.6V. MOD_ABS pulls line low to indicate module is plugged in.
- 5. Internally pulled down per SFF-8431 Rev 4.1.
- 6. LOS is open collector output. It should be pulled up with $4.7k\Omega-10k\Omega$ on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

V. Electrical Characteristics

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Symbol	Min.	Тур.	Max	Unit	Notes
Power Consumption	р			1.8	W	
Supply Current	Icc			520	mA	
	Tran	smitter				
Single-ended Input Voltage Tolerance	Vcc	-0.3		4.0	V	
AC Common Mode Input Voltage Tolerance (RMS)		15			mV	
Differential Input Voltage Swing	Vin,pp	180		850	mVpp	
Differential Input Impedance	Zin	90	100	110	Ohm	1
Transmit Disable Assert Time				10	us	
Transmit Disable Voltage	Vdis	Vcc-1.3		Vcc	V	
Transmit Enable Voltage	Ven	Vee		Vee +0.8	V	2
	Re	ceiver				
Differential Output Voltage Swing	Vout,pp	300		850	mVpp	
Differential Output Impedance	Zout	90	100	110	Ohm	3
Data output rise/fall time	Tr/Tf	28			ps	4
LOS Assert Voltage	VlosH	Vcc-1.3		Vcc	V	5
LOS De-assert Voltage	VlosL	Vee		Vee +0.8	V	5
Power Supply Rejection	PSR	100			mVpp	6

Notes:

- 1. Connected directly to TX data input pins. AC coupled thereafter.
- 2. Or open circuit.
- 3. Input 100 ohms differential termination.
- 4. These are unfiltered 20-80% values.
- 5. Loss of Signal is LVTTL. Logic 0 indicates normal operation; logic 1 indicates no signal detected.
- 6. Receiver sensitivity is compliant with power supply sinusoidal modulation of 20 Hz to 1.5 MHz up to specified value applied through the recommended power supply filtering network.

VI. Optical Characteristics

The following optical characteristics are defined over the Recommended Operating Environment unless otherwise

Parameter	Symbol	Min.	Typical	Max	Unit	Notes		
Transmitter								
Center Wavelength	λ	λ -6.5		λ+6.5	nm	1		
Optical Spectral Width	Δλ			1	nm			
Side Mode Suppression Ratio	SMSR	30			dB			
Average Optical Power	P_{AVG}	0		4	dBm	2		
Optical Extinction Ratio	ER	8.0			dB			
Transmitter and Dispersion Penalty	TDP			3.0	dB			
Relative Intensity Noise	RIN			-128	dB/Hz			
Transmitter Eye Mask	Compliant with IEEE802.3ae							
	Re	ceiver						
Center Wavelength	λ	770	850	860	nm			
Receiver Sensitivity (Average Power)	Sen.			-11	dBm	3		
Input Saturation Power (overload)	Psat	0.5			dBm			
LOS Assert	LOSA	-30			dBm			
LOS De-assert	LOSD			-14	dBm			
LOS Hysteresis	LOSH	0.5			dB			

specified.

Notes:

- 1. λ refer to wavelength selection, 1470~1610nm please the "product selection.
- $2.\ Class\ 1$ Laser Safety per FDA/CDRH and IEC-825-1 regulations.
- 3. Measured with Light source $1470\sim1610$ nm, ER=8.0dB; BER =< 10^{-12} @10.3125Gbps, PRBS= 2^{31-1} NRZ.

VII. Digital Diagnostic Functions

The following digital diagnostic characteristics are defined over the Recommended Operating Environment unless otherwise specified. It is compliant to SFF-8472 Rev10.2 with internal calibration mode. For external calibration mode please contact our sales staff.

Parameter	Symbol	Min.	Max	Unit	Notes
Temperature monitor absolute error	DMI_ Temp	-3	3	degC	Over operating temp
Supply voltage monitor absolute error	DMI_VCC	-0.15	0.15	V	Full operating range
RX power monitor absolute error	DMI_RX	-3	3	dB	
Bias current monitor	DMI_ bias	-10%	10%	mA	
TX power monitor absolute error	DMI_TX	-3	3	dB	

VIII. Mechanical Dimensions

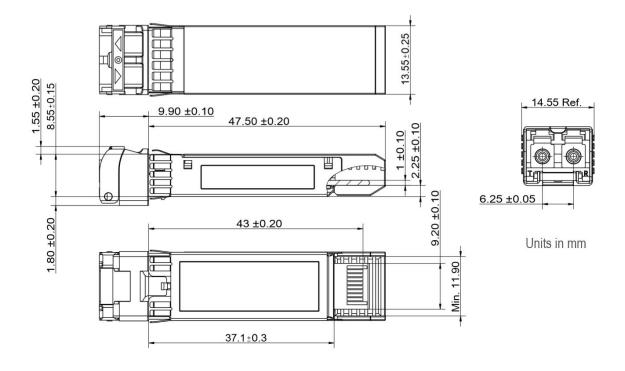


Figure 2. Mechanical Outline

HXSC-ALxx41I-R85

IX. Precautions

a. This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended. Follow guidelines according to proper ESD procedures.

b. Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.